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Multifractality of Brownian motion near absorbing polymers
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We characterize the multifractal behavior of Brownian motion in the vicinity of an absorbing star polymer.
We map the problem to anO(M )-symmetricf4-field theory relating higher moments of the Laplacian field of
Brownian motion to corresponding composite operators. The resulting spectra of scaling dimensions of these
operators display the convexity properties that are necessarily found for multifractal scaling but unusual for
power of field operators in field theory. Using a field-theoretic renormalization group approach we obtain the
multifractal spectrum for absorption at the core of a polymer star as an asymptotic series. We evaluate these
series using resummation techniques.@S1063-651X~99!06306-0#

PACS number~s!: 61.41.1e, 64.60.Ak, 64.60.Fr, 11.10.Gh
e
m

ac
of
ia
e
e

ve

ca

o
th
he
ite
-
on

co
et
el

n
tr
e
e
d

ne

on

ic
ena
rac-
en-
ves-

-

ture
ld
ture

eld
n-
we

ral,
d by

wo
us-

ry
ach

ly-
nd

rs

xt
he
ion.
of

dis-
ex-
l
o

I. INTRODUCTION
The concept of multifractality developed in the last d

cade has proven to be a powerful tool for analyzing syste
with complex statistics that otherwise appear to be intr
table@1,2#. It has found direct application in a wide range
fields, including turbulence, chaotic attractors, Laplac
growth phenomena, etc.@3,4#. Let us give a simple exampl
of a multifractal~MF! phenomenon. On a possibly fractal s
X,Rd of total sizeR, a fieldw(r ) is given at a microscopic
scalel . Then normalized moments of this field may ha
power law scaling behavior forl /R→0:

^w~r !n&/^w~r !&n;~R/l !2tn. ~1!

Nontrivial multifractal scaling is found iftnÞ0. When the
moments are averages over the sites ofX, w(r ) defines a
measure onX and rigorous arguments show that thetn are
convex from below as functions ofn @5,6#.

Here, we generalize an idea of Cates and Witten@7# by
deriving the MF spectrum in the frames of a field-theoreti
formalism and make use of renormalization group~RG!
methods accompanied by the resummation technique. To
knowledge the latter has not been applied before in
theory of multifractals. We relate the MF spectrum to t
spectrum of scaling dimensions of a family of compos
operators of Lagrangianf4 field theory. This gives an ex
ample of power of field operators whose scaling dimensi
show the appropriate convexity for a MF spectrum@6,8–10#.

We thus address a special case of a growth process
trolled by a Laplacian field. The latter may describe a vari
of phenomena, depending on the interpretation of the fi
For diffusion limited aggregation~DLA ! this field is given
by the concentration of diffusing particles, in solidificatio
processes it is given by the temperature field, in dielec
breakdown it is the electric potential, and in viscous fing
formation it is the pressure@4#. In all these processes th
resulting structure appears to be of a fractal nature an
characterized by appropriate fractal dimensions@12#. The
growth and spatial correlations of the structure are gover
by spectra of multifractal dimensions@1,2#. In general, the
boundary conditions determining the field will be given
PRE 591063-651X/99/59~6!/6914~10!/$15.00
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the surface of the growing aggregate itself. It is this dynam
coupling that produces the rich structure of the phenom
and seems to make the general dynamical problem int
table analytically. The scaling of the moments of the conc
tration near the surface of a DLA aggregate has been in
tigated in detail by Monte Carlo~MC! methods. Simulations
with high accuracy show that ind53 dimensions this scal
ing is described by the MF formalism, while ind52 no
power law scaling for higher moments occurs@11#.

Here, we study a simpler case where the fractal struc
is given and we look for the distribution of a Laplacian fie
r(r ) and its higher moments near the surface of the struc
@7#. We will follow the diffusion picture, considering the
aggregate as an absorbing fractal, ‘‘the absorber.’’ The fi
r(r ) gives the concentration of diffusing particles and va
ishes on the surface of the absorber. More specifically,
consider the Laplacian fieldr(r ) in the vicinity of an absorb-
ing polymer, or near the core of a polymer star. In gene
we assume the ensemble of absorbers to be characterize
either random walk~RW! or self-avoiding walk~SAW! sta-
tistics. Multifractal scaling is found for then moments
^rn(r )& of the field with respect to these ensembles. The t
dimensional version of this problem is under current disc
sion. Sets of multifractal exponents ford52 have been pro-
posed recently with exact results from conformal field theo
@13# and with perturbative results using the present appro
@10#.

This formulation of the problem allows us to use the po
mer picture and theory developed for polymer networks a
stars @14,15# and extended to copolymer stars@9,10#. The
theory is mapped to a Lagrangianf4 field theory with sev-
eral couplings@16–18# and higher order composite operato
@15,9,10# to describe star vertices.

Our paper is organized in the following way. In the ne
section we present the path integral formulation of t
Laplace equation and relate it to a polymer representat
The field-theoretical representation and renormalization
this polymer model aare discussed in Sec. III, where we
cuss the renormalization group flow and corresponding
pressions for the exponentstn . We calculate the multifracta
spectrum to third order of perturbation theory using tw
6914 ©1999 The American Physical Society
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PRE 59 6915MULTIFRACTALITY OF BROWNIAN MOTION NEAR . . .
complementary approaches: the zero mass renormaliza
with successive« expansion~see, e.g.,@19#! and the massive
renormalization group approach at fixed dimension@20#. For
some special cases we reproduce previous results@7# that
were obtained in a lower order of perturbation theory. In S
IV we derive the multifractal spectra in terms of series e
pansions. These we present in both of our RG approac
The resulting series are asymptotic. In Sec. V we take
into account and obtain numerical values only by care
resummation. In Sec. VI we discuss our results and conc
the present study.

II. PATH INTEGRAL SOLUTION OF THE LAPLACE
EQUATION AND POLYMER ABSORBER MODEL

In this section we show how to describe the diffusion
particles in the presence of an absorbing polymer usin
‘‘polymer’’ formalism that represents both the random wal
of the diffusing particles and the absorber itself in the sa
way @7,21#. Let us formulate this problem first in terms of th
diffusion of particles in time. The probability of finding
diffusing particle at pointr 1 at time t if it started at pointr 0
at time t50 can be described by the following normalize
path integral:

G0~r 0 ,r 1 ,t !5^d„r (1)~0!2r 0…d„r
(1)~ t !2r 1…&H0(r (1),t) .

~2!

The angular brackets in Eq.~2! stand for the following aver-
age:

^•••&H0(r (1),t)5

E ~••• !exp@2H0~r (1),t !#d$r (1)%

E exp@2H0~r (1),t !#d$r (1)%

, ~3!

which is performed with the Hamiltonian

H0~r (1),t !5E
0

tS dr (1)~t!

2 dt D 2

dt. ~4!

The integration in Eq.~2! is performed over all pathsr (1)(t)
with 0<t<t. Note that we have absorbed the diffusion co
stant by a redefinition of time. The unit of the dimensionle
HamiltonianH0 is the productkBT of Boltzmann’s constan
and temperature, while that of timet is the square micro-
scopic lengthl 2. Spatial boundaries may be included in E
~2! by restricting the path integral to a subspace. The p
integrals in Eq.~3! are Gaussian and may be performed w
the boundary conditions of Eq.~2!, and are shown to be
equivalent to the solution of the following harmonic diffe
ential equation@22#:

S D r 0
2

]

]t DG0~r 0 ,r 1 ,t !50, G0~r 0 ,r 1,0!5d~r 12r 0!.

~5!

We now introduce the absorbing polymer into the syst
volume. The latter is assumed to be of much larger size t
the absorber itself. The probability of diffusing fromr 0 to r 1
is now G(r 0 ,r 1 ,t). Walks that touch the absorber cann
contribute to this probability. The absorber itself we descr
on
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by a path r (2)(s), 0<s<S2. The boundary condition is
implemented by an avoidance interactionu12 punishing any
coincidence of the pathr (1) of the RW and the pathr (2) of
the absorber. The correlation function of a random walk
the presence of an absorbing pathr (2)(s) with 0<s<S2 may
then be written as

G~r 0 ,r 1 ,S1!5K d„r (1)~0!2r 0…d„r
(1)~S1!2r 1…

3expH 2
u12

3! E0

S1
ds1E

0

S2
ds2d„r (1)~s1!

2r (2)~s2!…J L
H0(r (1),S1)

, ~6!

where we have adopted the notationt5S1. Obviously this is
symmetric inr 0 andr 1. The probability of finding a particle
at t50 in r 0 if it was launched at timet52` at any pointr 1
in the volume is then described by the field

r~r 0!5 lim
S1→`

1

VE dr1G~r 0 ,r 1 ,S1!. ~7!

Due to Eq.~5!, which is not perturbed in the volume outsid
the absorber,r(r 0) obeys the Laplace equation

Dr~r !50, ~8!

with the following boundary conditions: Because of th
avoidance conditionr vanishes on the absorber. If the exte
nal volume boundary]V is far enough from the absorbe
there is equal probability of reaching any point on]V result-
ing in a constant concentrationr5r` on ]V.

We are interested in ensemble averaged moments^rn(r 0
1j)& of the field in the vicinity of the absorber, i.e., wit
microscopicj. For the RW ensemble the average is p
formed with respect to the HamiltonianH0(r (2),S2); for the
SAW ensemble an additional interaction has to be includ
The moments we calculate as an ensemble average ove
configurations of the absorbing polymer choosing the siter 0
on the middle of the polymer@23#. Formally we write these
moments forj→0 as

lim
uju→0

^rn~r 01j!&

5 lim
Sa.m→`

1

Z
* m0
0 E )

a51

m1n

dra

3Gmn* ~r 0 ,r 1 , . . . ,r m1n ,S1 , . . . ,Sm1n!. ~9!

The normalizationZ
* m0
0 takes care of the configurations o

the absorber, as explained in the next section. The correla
function Gmn* is defined as
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Gmn* ~r 0 ,r 1 , . . . ,r m1n ,S1 , . . . ,Sm1n!

5K )
a51

m1n

d„r (a)~0!2r 0…d„r
(a)~Sa!2r a…

3expH 2 (
a,b51

m1n
ūab

3! E0

Sa
dsaE

0

Sb
dsb

3d„r (a)~sa!2r (b)~sb!…J L
(
a
H0(r (a),Sa)

. ~10!

Here, the absorbing walk is represented bym52 pathsr (1),
r (2), while the remainingn paths representn random walks,
as is shown in Fig. 1. The interaction matrixūab is in this
case given by ūab5$0 if a,b<m or a,b.m; u12
otherwise%.

The limits in Eq.~9! look rather ill defined at first sight
and indeed they should not be taken naively. Also the ev
ation of the functional integral~10! is not defined in this bare
form. Luckily we have at hand the polymer field theory th
has dealt with the problems of evaluating these formal
pressions@24#. We will show below how the theory is
mapped to a renormalizableO(M ) symmetric field theory in
terms of which the limits and a perturbative expansion of E
~10! make sense. For instance, the limituju→0 may be in-
terpreted as a short distance limit defining a composite
erator, while the limitSa.m→`, with Sb<m staying finite,
corresponds to a short chain limit derived in@25#. In the
frames of the polymer picture we may interpr
Gmn* (r 0 ,r 1 , . . . ,r m1n ,S1 , . . . ,Sm1n) as the correlation
function of m1n interacting walks all starting at pointr 0
with end points atr 1 , . . . ,r m1n . These describe what i
called a polymer star. The normalized partition function
such a star ofm1n polymer chains with chain lengths pa
rametrized bySa may be written as@14,15#

Z* mn$Sa%5
1

Nmn
E )

a51

m1n

dr a

3Gmn* ~r 0 ,r 1 , . . . ,r m1n ,S1 , . . . ,Sm1n!.

~11!

FIG. 1. n random walks that end at pointr 0 on the absorbing
polymer.
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The normalizationNmn is chosen such thatZ* mn$Sa%u ūab50

51 for vanishing interactions and the pointr 0 is arbitrary.
We have studied this problem of polymer stars with gene
interaction matrixūab in @9,10#. Here we will choose

ūab5H u11 if a,b<m

u22 if a,b.m

u12 otherwise.

~12!

This allows us to think of the absorbing pathsr (1), . . . ,r (m)

as being either of a RW (u1150) or of a SAW (u11Þ0)
ensemble. Withm.2 we also include in our study the mo
ments of the diffusion field near to the core of a polymer st
We includedu22 only to ease notation; in the present conte
u2250.

III. FIELD THEORY AND RENORMALIZATION

As is well known, the polymer model may be mapped
the limit M50 of O(M )-symmetrical Lagrangian field
theory @26#. We adopt the formalism developed for mult
component polymer solutions that allows us to describe b
polymers and interacting random walks@18#. Its field theory
is given by the following Lagrangian:

L$fa ,ma%5
1

2 (
a51

m1n E ddr $mafa
21@¹fa~r !#2%

1
1

4! (
a,b51

m1n

ūa,bE ddrfa
2~r !fb

2~r !. ~13!

The f2 terms should be read as scalar products of fieldsfa
with M component

fa
25 (

a51

M

~fa
a!2. ~14!

The parameterma is a chemical potential conjugated to th
chain length variablesSa in Eq. ~6!. Correlation functions in
this theory are defined by averaging with the LagrangianL:

^~••• !&L5E D@fa~r !#~ . . . !exp@2L$fa ,ma%# uM50 .

~15!

Here, functional integration*D@fa(r )# is defined in such a
way that normalization is already included:^1&uL51 if all
ūa,b[0. The limit M50 in Eq. ~15! can be understood as
selection rule for the diagrams that contribute to the per
bation theory expansion and can be easily checked in
context to correspond to interacting polymers in the follo
ing way: The partition functionZ* mn defined in Eq.~6! is
mapped to the field-theoretical correlation functionZ̃* mn via
Laplace transforms in the chain length variablesSa to con-
jugate chemical potentials~‘‘mass variables’’! ma :

Z̃* mn$ma%5E
0

`

)
b

dSbe2mbSbZ* mn$Sa%. ~16!
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In terms of the above defined Lagrangian field theory,Z̃* mn
is given by

Z̃* mn$ma%5K E )
a51

m1n

drafa~r 0!fa~r a!L U
L

. ~17!

Our interest is in the scaling properties of these functio
Note that in Eq.~17! these are governed by the spectrum
scaling dimensions of the composite operators)a51

m1nfa . To
extract these dimensions we use RG methods@27,28#. Here,
we apply the results of our previous approaches to the p
lem of copolymer stars@9,10#: massless renormalizatio
group scheme with successive« expansion~see, e.g.,@19#!
and massive renormalization group approach at fixed dim
sion @20# compiled in a pseudo-«-expansion@29#. On the
basis of correlation functions it is standard to define ver
functionsG ūab

(4) corresponding to the couplingsūab as well as

vertex functionsGPfa
* mn with the insertion of composite opera

tors )afa . Explicit expressions may be found in@10#. We
define renormalization and introduce renormalized coupli
ḡab by

ūab5m«Zfa
Zfb

Zabḡab . ~18!

The renormalizingZ factors are power series in the reno
malized couplingsḡab subject to the following renormaliza
tion conditions:

Zfa
~ ḡaa!

]

]k2
Gaa

(2)
„ūaa~ ḡaa!…51, ~19!

Zab~$ḡab%!Gaabb
(4)

„ūab~$ḡab%!…5m«ḡab . ~20!

The scale parameterm is equal to the mass at which th
massive scheme is evaluated or it gives the scale of the
ternal momenta in the massless scheme.

In order to renormalize the star vertex functions we int
duce renormalization factorsZPfa

* mn by

S )
a51

k

Zfa

1/2D ZPfa
* mnGPfa

* mn
„ūab~$ḡab%!…5mdPfa, ~21!

wheredPfa
is the engineering dimension of the compos

operator

dPfa
5~m1n!S «

2
21D142«. ~22!

The renormalized couplingsḡab and renormalizingZ factors
depend on the scale parameterm. This is expressed by th
following RG flow equations:

m
d

dm
ḡab5b̄ab~$ḡab%!, ~23!

m
d

dm
ln ZPfa

* mn~$ḡab%!5hPfa
~$ḡab%!. ~24!
s.
f

b-

n-

x

s

x-

-

Our original problem is described by two sets of walks
different species. In this case only the three different c
plingsu11, u12, andu22 in Eq. ~12! remain. We will refer to
their renormalized counterparts asg11, g22, g125g21. The
corresponding functionsb11, b22, b12 define the flow in
the space of couplings. This RG flow was discussed
@17,18#. Its fixed points are determined by the set of equ
tions

b11~g11* !50,

b22~g22* !50, ~25!

b12~g11* ,g22* ,g12* !50.

In the space of the three couplings one finds@18# eight
fixed points corresponding to the absence or presenc
inter- and intraspecies interaction. The equations for
fixed points of theb functions were found to have the fo
lowing nontrivial solutions: baa(gS* )50; and for a
Þb, b12(0,0,gG* )50, b12(gS* ,0,gU* )50, b12(0,gS* ,gU* )50,
and b12(gS* ,gS* ,gS* )50, corresponding to all combination
of interacting and noninteracting chains.

The phenomenon we address in this paper correspond
the case of a nonvanishing interaction between the two s
cies of walks, while one set has no self-interaction. Thus
consider the two fixed points, which we callG (g115g22

50,g125gG* ) and U (g115g* , g2250,g125gU* ). The first
~G! corresponds to a set of random walks interacting w
another set of random walks of a second species and
describes absorption on random walk absorbers; the se
~U! corresponds to a set of random walks interacting wit
set of self-avoiding walks and thus describes absorption
SAW ~polymer! absorbers.

Havingm walks of the first species andn walks of second
species we define the following exponents in the fixed po
G,U:

hmn
G 5hPfa

~g115g2250,g125gG* !, ~26!

hmn
U 5hPfa

~g115g* ,g2250,g125gU* !, ~27!

which govern the scaling properties of the partition sum~11!.
The scaling may be formulated in terms of the sizeR of

the absorbing walks, while the RWs of the diffusing particl
are taken infinitely long. This corresponds to a short ch
expansion@25#. We have to normalize the partition functio
by the number of configurations of the absorber given
Z* m0 and by thenth power of the first moment@see Eq.~1!#.
For largeR on the microscopic scalel the moments ofr(r 0)
at point r 0 in the vicinity of the core of the star scale like

^r~r 0!n&

^r~r 0!&n
5Z* mn /Z* m0~Z* m1 /Z* m0!2n;S R

l
D 2tmn

,

~28!

whereR5Sa<m
n and the exponentstmn are given as

tmn52hmn1nhm12~n21!hm0 . ~29!
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Here, n is the correlation length critical exponent of th
walks: n51/2 for random walks andn.0.588 for self-
avoiding walks atd53. For the fixed pointG we have
hm0

G 50 andn51/2 for all walks. The scaling near a RW st
is then described by inserting the value ofhG, while the
scaling near a SAW star is obtained by insertinghU. In
previous work@9,10#, we obtained the exponentshmn

G , hmn
U

in third order of perturbation theory.

IV. MULTIFRACTAL SPECTRUM

A widely used characterization for the MF spectrum is t
so called spectral functionf m(a) @2#. To obtain this function
for the absorption process on the center of a star withm legs
we analytically continue the set of exponentstmn in the vari-
ablen and calculate the following Legendre transform:

f m~amn!52tmn1namn1Dm with amn5
dtmn

dn
1Dm .

~30!

Following the standard definition we have included in E
~30! the fractal dimensionDm of the absorber. In particular
this gives the maximal value of the spectral functi
f m(amn) to be equal to the dimensionDm . An absorbing
chain is described by the casem52, whereD252 if the
chain is a random walk andD251.71 if it is self-avoiding. In
this special case the midpoint of the chain correspondin
the ‘‘core’’ of the 2-star is equivalent to any other poi
along the chain as far as the MF scaling of the moment
concentration is concerned. This excludes the end poin
gions that are described by them51 case.D2 thus corre-
sponds to the fractal dimension of this set of equival
points. There appears to be no natural generalization ofDm
to arbitrarym where only the moments of concentration ne
a special point of the absorbing structure~the core of the
star! are of interest. In any caseDm only shifts the curve of
the spectral functionf (a) in the f-a plane by a constan
offset. In our presentation we have chosen this offset in s
a way that for allm the maximal point of the spectral curv
coincides with that of the casem52. This corresponds to th
fact that the fractal dimension of a polymer star is equa
that of a linear chain.

In the m52 case the moments of concentration may a
be calculated by averaging over all the sites along the ch
For a very long chain one may expect this average to
equivalent to an average of the moments of concentra
only at the midpoint site using an ensemble average ove
configurations of the chain@7#. The site average has been t
original approach to multifractality also due to its easier a
plication in MC simulations. For generalm, new interesting
behavior occurs only in the vicinity of the core of the sta
Only an ensemble average may thus be used to define
moments of concentration near this point. This approac
used here for all values ofm. Note that some features of M
spectra that are defined using site averages do not hold
those based on ensemble averages. This will be discu
below.

To obtain the expressions for the spectral function we
the perturbation expansions for theh exponents given to
third order both in massless and massive renormaliza
.
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@9,10#. These exponents are available both in terms
«-expansion and pseudo-«-expansion series. The first corre
sponds to collecting perturbation theory terms of the sa
power of «542d. In the pseudo-«-expansion series@29#
each power of the pseudo-« parametert collects the contri-
butions from the dimension-dependent loop integrals of
same order. In the final results the limitt51 is taken. Start-
ing from the relations fortmn , Eq. ~29!, and the spectra
function ~30! some algebra results in the corresponding
pansions for the MF spectra for absorption on stars of r
dom walks~RWs! and self avoiding walks~SAWs!:

amn
RW~«!52m~2n21!«2/81m@4mn16nz~3!212n13n2

1522m23z~3!#«3/16, ~31!

f m
RW~«!52mn2«2/81mn2@2612n12m13z~3!#«3/16,

~32!

amn
SAW~«!529m~2n21!«2/12813m@168mn154n21157

1180nz~3!2350n284m290z~3!#«3/2048,

~33!

f m
SAW~«!529mn2«2/12813mn2@2175136n184m

190z~3!#«3/2048, ~34!

amn
RW~t!52m«~114ni122i 122n!t2/41a3-loop

RW t3,
~35!

f m
RW~t!52«mn2~2112i 1!t2/41 f 3-loop

RW t3, ~36!

amn
SAW~t!529m«~122n14ni122i 1!t2/641a3-loop

SAW t3,
~37!

f m
SAW~t!529«mn2~2112i 1!t2/641 f 3-loop

SAW t3. ~38!

Here z(3).1.202 is the Riemann zeta function,i 1 , i 2 are
the two-loop integrals depending on the space dimensiod:
at d53 i 152/3, i 2522/27. The explicit form of the three
loop contributions in Eqs.~35!–~38! is given in Appendix A.

V. RESUMMATION AND RESULTS

As is well known, the series of type~31!–~38!, as they
occur in field theory appear to be of an asymptotic nat
with zero radius of convergence and are of limited use w
out resummation~see, e.g.,@30#!. However, knowing the
asymptotic behavior of the series as derived from the
theory, we may evaluate these asymptotic series. To this
several procedures are available, differing in the amoun
information that is used to control the convergence. We
tract this additional information for the case of our Lagran
ian ~13! from @18,31#. We expect the following behavior o
the kth order perturbation theory termAk for any of the
above quantities:

Ak;k! kb~2a!k. ~39!

The constanta for the « expansion of Lagrangianf4 field
theory with one coupling was derived in@31#: a53/8. For
the unsymmetric fixed pointU, where two different cou-
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FIG. 2. MF spectrum for diffu-
sion near an absorbing RW. Com
parison of different approximation
and resummation schemes.
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plings are present, the valuea527/64 has been propose
@18#. We assume here that the same properties also hold
the pseudo-« expansion in terms oft. With the above infor-
mation at hand one can make use of the Borel summa
technique improved by the conformal mapping proced
that has served as a powerful tool in field theory calculati
~see@30#, for example!. We present some details of the r
summation procedure in Appendix B.

The results of the resummation of the series for the sp
tral functions are presented in Figs 2–6. Each point mar
by a symbol corresponds to the resummation of b
f m(amn) andamn for a given pair (m,n), where we used a
half-integer spacing for the values ofn. Note that the right
wings of the curves correspond to negativen,0. In this
region reliable resummations were feasible only for su
ciently largem. We have only included resummations th
were successful in minimizing the deviation between the s
ond and third order resummed values as described in Ap
dix B.

In Fig. 2 we study the effects of different RG and resu
mation procedures forf 2

RW(a) in d53 dimensions. The
for

n
e
s

c-
d
h

-
t
c-
n-

-

most simple approach is to directly insert«51 into the«
expansion, and for thet expansion to uset51 and thed
53-dimensional values for the integrals. As can be se
from the curves, this will work only for the series truncate
at second order and for smalln, i.e., near the maximum o
f 2(a) at n50. In addition we have performed an analytic
continuation of our series using@2/1# Padéapproximants for
the series truncated at third order. The symmetry of the P´
approximant holds only in the region shown and may be
artifact of the method. On the left wing, where it coincid
with the resummed results, the Pade´ approximant gives a
continuation that is compatible with the estimation for t
minimal a valueamin5d22 @7#. The Pade´ result isamin(«)
51.333, amin(t)51.017 for the RW absorber andamin(«)
51.250, amin(t)51.013 for the SAW absorber, which is ca
culated here only from third order perturbation theory. T
Padéapproximant, while already significantly improving th
convergence of the results, introduces some apparently
ficial singularities. Moreover, it does not make full use of t
known asymptotics for the« expansions. We have therefor
chosen a more sophisticated method of resummation tha
FIG. 3. MF spectra for diffu-
sion near an absorbing RW star («
expansion!.
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FIG. 4. MF spectra for diffu-
sion near an absorbing RW star (t
expansion!.
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proven to reproduce reliable data in many field-theoretic
plications @28,30#. The results of these resummations a
again shown for both RG approaches. Note that though
results obtained foran and f 2(an) for a specific value ofn
differ in both approaches, the same curvef 2(a) is described
with better coincidence for the left wing of the curves, co
responding to positiven.

Figures 3–6 present the resummed MF spectraf m(a) of
Brownian motion near generalm-leg polymer stars ind53
dimensions. The family of curvesf m(a) appears to approac
some limiting envelope for increasingm in all cases. This
behavior is more pronounced in the case of Brownian mo
near an absorbing SAW star. This provides evidence that
MF spectrum catches rather general properties of the p
nomena under consideration. Here, for the absorption of
fusing particles on a polymer star the spectrum only sligh
varies with the number of legsm of the star, even in the
vicinity of the core of the star. Only the absorption on an e
point (m51) proves to be an exception.

The behavior of the maximum of the spectra may also
studied in terms of the series expansion. The original p
-

e

-

n
he
e-
f-
y

d

e
i-

tion of the maximum is given by itsa coordinate in« ex-
pansion in the following form:

am,05hm,12hm,08 , ~40!

amax
RW5m«/81•••, ~41!

amax
SAW5m~12m!«/81•••. ~42!

For m.1 the position of the SAW maximum is shifted in
direction opposite that of the RW maximum. In the« expan-
sion we find for the curvature at the maximum,

1/f m9 ~a!52hm,09 , ~43!

1/f m9
RW~a!52m«2/4$12«/2@2m2613z~3!#%1•••,

~44!

1/f m9
SAW~a!529m«2/641•••. ~45!
r

FIG. 5. MF spectra for diffu-

sion near an absorbing SAW sta
(« expansion!.
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FIG. 6. MF spectra for diffu-
sion near an absorbing SAW sta
(t expansion!.
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Here, we use the notationsf m8 (a)5d/da f m(am,n)un50 and
hm,n8 5d/dnhm,nun50, and correspondingly for higher deriva
tives. As can be seen also in the plots, the radiusRm

;1/f m9 (a) of the curvature increases withm for both the RW
and SAW star. Some asymmetry is also present in the p
It may be more explicitly extracted from the series by co
sidering

f m9 ~a!/ f m-~a!5~hm,09 !2/h0,m- , ~46!

f m9
RW~a!/ f m-

RW~a!5m«/12@12«„2m2613z~3!…#1•••,
~47!

f m9
SAW~a!/ f m-

SAW~a!5m«/16@12«„7m/22175/24

115/64z~3!…#1•••. ~48!

This shows that the asymmetry at the maximum decrea
slightly with m. The plots seem to indicate that it approach
some limiting value.

From the plots we present here, in general one may
duce that the series for the MF spectra for diffusion near
absorbing polymer star possess stable resummations and
the shape of the resulting curves is robust against the ch
of the number of legsm of the polymer star, while a limiting
curve seems to be approached with increasingm.

VI. CONCLUSIONS

The present work represents extended results on the
behavior of Brownian motion in the vicinity of an absorbin
polymer structure. We extend the ideas of Cates and Wi
@7# to map this problem to a problem of interacting walk
The former authors used a Fixman expansion techniqu
extract the exponents governing the MF scaling. This
proach is equivalent to a direct renormalization method
unique to dimensional renormalization with« expansion.
The Fixman expansion assumes without proof the renorm
izability of the quantities corresponding to higher mome
of the Laplacian field of Brownian motion. Here, we map t
problem to anO(M )-symmetricf4-field theory relating the
above quantities to corresponding composite operators
ts.
-

es
s

e-
n
hat
ge

F

n
.
to
-
d

l-
s

or

which renormalizability has been proven@15#. Furthermore,
the scaling exponents of these operators have been calcu
in our previous work@9,10#. There, it has been shown tha
the resulting spectra of scaling dimensions of these opera
display the convexity properties that are necessarily fou
for multifractal scaling but unusual for power of field oper
tors in field theory@6,8#.

The extensive RG study in@9,10# with three-loop results
allows us here to consider the general case of Brownian
tion near the core of a star polymer withm legs. The higher
order calculation was improved by resummation to give
liable estimates for the families of MF spectra describing
multiscaling of Brownian motion near absorbing RW
SAW stars.

Our results have proven to be equally stable under
change of the general RG treatment. We applied t
complementary RG approaches, the dimensional renorm
ization with successive« expansion as well as massiv
renormalization at fixed space dimensionalities. The resu
mation in particular enabled us to extend the region o
which the curves for the MF spectra coincide in both R
approaches, reflecting the stability of the scheme of calc
tions. Our plotted results~Figs. 3–6! indicate some indepen
dence of the spectral function from the number of legs of
absorbing polymer star. For a higher number of legs
spectrum seems to approach a limiting curve. The MF sp
tra calculated here show most of the common features sh
by spectral functions that describe a variety of MF pheno
ena. Let us note, however, that unlike the common definit
of the underlying scaling exponents based on site avera
we rely here on ensemble averages for the moments of
Laplacian field of Brownian motion. We average over t
configurational ensembles of absorbing polymer stars. O
for the case ofm52 legs of the absorbing star, could a si
average definition also be used. As has been noted als
@7,32# the ensemble average leads to the possibility of ne
tive values of the spectral function~see Figs. 2–6!. Further-
more, the fractal dimension is not defined for the core o
polymer star.

Experimentally such absorbing systems are realized
diffusion controlled reactions with traps or reaction sites
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tached to polymer chains. This is described by the irreve
ible reactionA1B→0 with freely diffusing particlesA and
trapsB attached along the polymer chain@21#. The higher
nth moments of the field at some special trap might th
describe the reaction rate forAn1C→0. If C is located at
the core of a polymer star, this system realizes all aspec
our study. While extensive MC studies exist for many pro
lems in the field of DLA, we hope that our detailed calcu
tions might initiate also an MC approach to the present pr
lem. The current study also allows an extrapolation tod52
dimensions. However, one should not expect to find res
of a pure two-dimensional approach, due to topological
strictions ind52 that are not present in the perturbative«
expansion@33#.

While standard in field-theoretical studies of critical ph
nomena, the resummation technique, to our knowledge,
not been applied in the theory of multifractals. We hope t
our attempt will attract attention to this possibility, in th
context of other problems that arise in the theory of mu
fractal measures.
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APPENDIX A: THREE-LOOP CONTRIBUTIONS
TO THE MULTIFRACTAL SPECTRUM

Here, we collect the three-loop contributions of the e
pressions for the Ho¨lder exponentsamn @Eqs.~35! and~37!#
and the spectral functionsf m(amn) @Eqs.~36! and ~38!# ob-
tained in the pseudo-«-expansion scheme. The expressio
read

a3-loop
RW 52

m«

8
~3i 6m23n213m26mn120i 126i 413i 5

23i 613i 7216i 1
2246ni12516i 4m13i 5m112n

29i 4n2212i 4mn19n2i 1132ni1
226i 7n26i 5mn

26i 6mn16i 6n118i 4n212mi1124nmi126i 5n!,

~A1!

f 3-loop
RW 52

«mn2

8
~622n26i 4n19i 423i 5m26i 4m23i 6m

23i 723i 5112mi1116i 1
2223i 116ni123m

13i 6!, ~A2!

a3-loop
SAW 52

3m«

512
~2862718ni12198mi1136i 6m1126i 4m

136i 5m227n2154m2108mn1332i 114i 2

2108i 4136i 5236i 6145i 7272i 5n172i 6n290i 7n
s-

n

of
-
-
-

ts
-

-
as
t

-

-
a-

o

b

-

s

1496ni1
2181n2i 1272i 5mn281i 4n22252i 4mn

272i 6mn28i 2i 1116ni2i 128ni21396nmi1

2248i 1
21190n1270i 4n!, ~A3!

f 3loop
SAW52

3«mn2

512
~95218n254i 4n1135i 4236i 5m

2126i 4m236i 6m245i 7236i 51198mi11248i 1
2

2359i 1154ni1254m136i 624i 218i 2i 1!. ~A4!

The numerical values of the two-loop (i 1 , i 2) and three-
loop i 3–i 8 integrals at d53 equal @34#: i 152/3,
i 2522/27, i 3520.037 682 072 5,i 450.383 576 096 6,i 5
5 0.519 431 241 3, i 6 5 1/2, i 7 5 0.173 900 610 7, i 8
520.094 651 431 9.

APPENDIX B: RESUMMATION PROCEDURE

Here, we briefly describe the resummation method for
asymptotic series that we applied in our calculatio
@30,31,35#. The starting point is the expansion for the fun
tion of interest:

b~«!5(
k

Ak«
k. ~B1!

The coefficientsAk are supposed to possess the followi
behavior:

Ak5ckb0~2a!kk! @11O~1/k!#, k→` ~B2!

with known values of constantsc, b0 , a. The property
~B2! indicates the Borel summability of the series~B1!. The
Borel resummation procedure takes into account
asymptotic behavior of the coefficients and maps
asymptotic series to a convergent one with the sa
asymptotic limit. The procedure is as follows. For the ser
~B1! we define a Borel-Leroy transformf B(«) by

f B~«!5(
j

f ( j )« j

G~ j 1b11!
, ~B3!

with the Euler gamma functionG(x) and a fit parameterb.
Then the initial series may be regained from

f res~«!5E
0

`

dttbe2t f B~«t !. ~B4!

Assuming the behavior of the high order terms~B2!, one
concludes that the singularity of the transformed seriesf B(«)
closest to the origin is located at the point (21/a). Confor-
mally mapping the« plane onto a disk of radius 1 while
leaving the origin invariant,

w5
~11a«!1/221

~11a«!1/211
, «5

4

a

w

~12w!2
,

and substituting this intof B(«), and reexpanding inw, we
receive a series defined on the disk with radius 1 in thew
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plane. This series is then resubstituted into Eq.~B4!. In order
to weaken a possible singularity in thew plane, the corre-
sponding expression is multiplied by (12w)a and thus one
more parametera is introduced@35#. In the resummation
procedure the value ofa is taken from the known large-orde
behavior@18,31# of the«-expansion series, whilea was cho-
n

er

-
ia

y
F
e-
ar
ou

l.
sen in our calculations as a fit parameter defined by the c
dition of minimal difference between resummed second
der and third order results. The resummation procedure
seen to be quite insensitive to the parameterb introduced by
the Borel-Leroy transformation~B3!. The above procedure
was applied to both the«- and pseudo-«-expansion series.
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