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Multifractality of Brownian motion near absorbing polymers
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We characterize the multifractal behavior of Brownian motion in the vicinity of an absorbing star polymer.
We map the problem to a®(M)-symmetricé*-field theory relating higher moments of the Laplacian field of
Brownian motion to corresponding composite operators. The resulting spectra of scaling dimensions of these
operators display the convexity properties that are necessarily found for multifractal scaling but unusual for
power of field operators in field theory. Using a field-theoretic renormalization group approach we obtain the
multifractal spectrum for absorption at the core of a polymer star as an asymptotic series. We evaluate these
series using resummation techniqugs1063-651X99)06306-(

PACS numbdps): 61.41+e, 64.60.Ak, 64.60.Fr, 11.10.Gh

I. INTRODUCTION the surface of the growing aggregate itself. It is this dynamic

The concept of multifractality developed in the last de-coupling that produces the rich structure of the phenomena
cade has proven to be a powerful tool for analyzing systemand seems to make the general dynamical problem intrac-
with complex statistics that otherwise appear to be intractable analytically. The scaling of the moments of the concen-
table[1,2]. It has found direct application in a wide range of tration near the surface of a DLA aggregate has been inves-
fields, including turbulence, chaotic attractors, Laplaciantigated in detail by Monte CarlMC) methods. Simulations
growth phenomena, et3,4]. Let us give a simple example with high accuracy show that id=3 dimensions this scal-
of a multifractal(MF) phenomenon. On a possibly fractal seting is described by the MF formalism, while =2 no
XCRY of total sizeR, a field ¢(r) is given at a microscopic power law scaling for higher moments occiitd].
scale/. Then normalized moments of this field may have Here, we study a simpler case where the fractal structure

power law scaling behavior fof/R—0: is given and we look for the distribution of a Laplacian field
p(r) and its higher moments near the surface of the structure
(e(n)MI{@(r))"~(RI/) ™ ™. (1) [7]. We will follow the diffusion picture, considering the

aggregate as an absorbing fractal, “the absorber.” The field

Nontrivial multifractal scaling is found ifr,# 0. When the  p(r) gives the concentration of diffusing particles and van-
moments are averages over the sitesXpfp(r) defines a ishes on the surface of the absorber. More specifically, we
measure orX and rigorous arguments show that theare  consider the Laplacian fielal(r) in the vicinity of an absorb-
convex from below as functions of[5,6]. ing polymer, or near the core of a polymer star. In general,

Here, we generalize an idea of Cates and Wiftéhby = we assume the ensemble of absorbers to be characterized by
deriving the MF spectrum in the frames of a field-theoreticaleither random walKRW) or self-avoiding walk(SAW) sta-
formalism and make use of renormalization gro(RG)  tistics. Multifractal scaling is found for then moments
methods accompanied by the resummation technique. To ogp"(r)) of the field with respect to these ensembles. The two
knowledge the latter has not been applied before in thelimensional version of this problem is under current discus-
theory of multifractals. We relate the MF spectrum to thesion. Sets of multifractal exponents fd=2 have been pro-
spectrum of scaling dimensions of a family of compositeposed recently with exact results from conformal field theory
operators of Lagrangiag® field theory. This gives an ex- [13] and with perturbative results using the present approach
ample of power of field operators whose scaling dimension§10].
show the appropriate convexity for a MF spectr[68-10. This formulation of the problem allows us to use the poly-

We thus address a special case of a growth process comer picture and theory developed for polymer networks and
trolled by a Laplacian field. The latter may describe a varietystars[14,15 and extended to copolymer stdi$,10]. The
of phenomena, depending on the interpretation of the fieldtheory is mapped to a Lagrangiasf field theory with sev-
For diffusion limited aggregatiofDLA) this field is given eral couplingg§16—18 and higher order composite operators
by the concentration of diffusing particles, in solidification [15,9,1( to describe star vertices.
processes it is given by the temperature field, in dielectric Our paper is organized in the following way. In the next
breakdown it is the electric potential, and in viscous fingersection we present the path integral formulation of the
formation it is the pressurf4]. In all these processes the Laplace equation and relate it to a polymer representation.
resulting structure appears to be of a fractal nature and i¥he field-theoretical representation and renormalization of
characterized by appropriate fractal dimensi¢fg]. The this polymer model aare discussed in Sec. lll, where we dis-
growth and spatial correlations of the structure are governeduss the renormalization group flow and corresponding ex-
by spectra of multifractal dimensionig4,2]. In general, the pressions for the exponents. We calculate the multifractal
boundary conditions determining the field will be given onspectrum to third order of perturbation theory using two
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complementary approaches: the zero mass renormalizatidoy a pathr(®)(s), 0<s<$S,. The boundary condition is
with successive expansior(see, e.g.[19]) and the massive implemented by an avoidance interactiop punishing any
renormalization group approach at fixed dimengi®@]. For  coincidence of the path®® of the RW and the path(® of
some special cases we reproduce previous reftiltshat  the absorber. The correlation function of a random walk in
were obtained in a lower order of perturbation theory. In Secthe presence of an absorbing patfi(s) with 0<s<$S, may
IV we derive the multifractal spectra in terms of series ex-then be written as
pansions. These we present in both of our RG approaches.
The resulting series are asymptotic. In Sec. V we take this
into account and obtain numerlcal values only by careful G(ro,r1,S) = 6M(0)—rp)srr (S, —r,)
resummation. In Sec. VI we discuss our results and conclude
the present study.
Uqo Sy S 1
Xexp — o | dsy | ds8(rM(sy)
Il. PATH INTEGRAL SOLUTION OF THE LAPLACE 31 Jo 0
EQUATION AND POLYMER ABSORBER MODEL

In this section we show how to describe the diffusion of _r(2)(32))}> ' 6)
particles in the presence of an absorbing polymer using a Ho(r(),sp)

“polymer” formalism that represents both the random walks

of the diffusing particles and the absorber itself in the samgnare we have adopted the notationS,. Obviously this is
way[7,21]. Let us formulate this problem first in terms of the symmetric inr, andr,. The probability of finding a particle
diffusion of particles in time. The probability of finding a _ii—q in r, if it was launched at timé=— = at any point

diffusing particle at point, at timet if it started at pointrg in the volume is then described by the field
at timet=0 can be described by the following normalized

path integral:

1
Go(ro,rlit):<5(r(1)(0)_r0)5(r(l)(t)_r1)>HO(r(1),t)- p(ro)= Ilim vj driG(ro,r1,Sy). (7)
) S

The angular brackets in E(R) stand for the following aver-

age: Due to Eq.(5), which is not perturbed in the volume outside

the absorberp(ry) obeys the Laplace equation

f ( ’ ~)exp[—H0(r(1),t)]d{r(1)} Ap(r)=0 (8)

)

(- '>H0(r(1),t):
| exit — ot 010 | _ y
with the following boundary conditions: Because of the
avoidance conditiop vanishes on the absorber. If the exter-
nal volume boundaryV is far enough from the absorber
t{dr(7))?2 there is equal probability of reaching any point & result-
( >dr ) T (4)  ing in a constant concentratigr= p., on dV.
We are interested in ensemble averaged momgiiig

. L . + of the field in the vicinity of the absorber, i.e., with
The integration in Eq(2) is performed over all paths™)(7) mii)rz)scopicg. For the RW er¥semble the average is per-

with 0= r=<t. Note that we have absorbed the diffusion con-  ed with respect to the Hamiltoniai(r®,S,): for the

stant by a redefinition of time. The unit of the dimensionless, . . . .
Hamiltonian™, is the produckgT of Boltzmann’s constant SAW ensemble an additional interaction has to be included.

and temperature, while that of tinteis the square micro- Igr?fimtj)rra?[ie;ri \é\'fetrfglgggreb;s agleg]sgn;ﬁfozi\fr?ﬁg o_\t/:r all
scopic length/2. Spatial boundaries may be included in Eq. 9 9 poly 9 Y

(2) by restricting the path integral to a subspace. The patl‘i)n the middle of the polymei23]. Formally we write these

integrals in Eq(3) are Gaussian and may be performed withmoments forf—0 as
the boundary conditions of Eq2), and are shown to be
equivalent to the solution of the following harmonic differ- |im (p"(ry+ ¢))

which is performed with the Hamiltonian

Ho(r(l),t) = f

0

ential equatiorj22]: lél—0
(9 1 m-+n
(Aro_ _)Go(roJl,t):O, GO(ro.r1,00=8(ry,—ro). = lim 0 J' H dry
o Sa>m—*® Z* m0 a=1

©)

We now introduce the absorbing polymer into the system

volume. The latter is assumed to be of much larger size than

the absorber itself. The probability of diffusing frarptor, ~ The normalizationz? , takes care of the configurations of

is now G(rq,rq,t). Walks that touch the absorber cannotthe absorber, as explained in the next section. The correlation
contribute to this probability. The absorber itself we describefunction G, is defined as

XG:’m(rO!rll "'1rm+n!81! "'!Sm+n)- (9)
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v 2 .n The normalizationV;,, is chosen such thazf*mn{sa}hab:o

=1 for vanishing interactions and the poiry is arbitrary.
N \ ! We have studied this problem of polymer stars with general

N NRTEERETIRRIY , interaction matrixu,y, in [9,10]. Here we will choose

AT ! u;; if a,b=m
Up=19 Uz if a,b>m (12
N u;, otherwise.

\Y This allows us to think of the absorbing pattg), ... r(™
" as being either of a RWu(;=0) or of a SAW {,,#0)
@ ensemble. Withm>2 we also include in our study the mo-
ments of the diffusion field near to the core of a polymer star.

We includedu,, only to ease notation; in the present context
FIG. 1. n random walks that end at poing on the absorbing ;,,=Q.

polymer.

Ill. FIELD THEORY AND RENORMALIZATION
G:’m(rOlrla s !rm+nlsll LRC !Sm+n)

men As is well known, the polymer model may be mapped to
_ @ _ (a) B the limit M=0 of O(M)-symmetrical Lagrangian field
<l[1 Ar(0) =) (= (Ss) —ra) theory [26]. We adopt the formalism developed for multi-
component polymer solutions that allows us to describe both

pl Uab Sa Sy polymers and interacting random walkkS]. Its field theory
xexp = 2 3], ds, . ds, is given by the following Lagrangian:
1 m+n
X 5(f(a)(3a)—f(b)(5b))J> : (10) Lida pal=7 21 f dr{ a3+ [V da(r) ]}
SH(r@),S,) .
a 1 mn
Here, the absorbing walk is representedniyy: 2 pathsr (%), + aél ua,bf dor p2(r)d(r). (13

r®), while the remaining paths represent random walks,

asis ShO_WH in Fig. 1. The mterac’uon matiigy is in this - 11,q ¢? terms should be read as scalar products of fieigs
case given by ug={0 if ab<m or a,b>m; u;,  with M component

otherwisé.
The limits in Eq.(9) look rather ill defined at first sight, M
and indeed they should not be taken naively. Also the evalu- = > (p2)2. (14)
a=1

ation of the functional integrdll0) is not defined in this bare

form. Luckily we have at hand the polymer field theory that

has dealt with the problems of evaluating these formal exThe parameter, is a chemical potential conjugated to the
pressions[24]. We will show below how the theory is chain length variableS, in Eq. (6). Correlation functions in
mapped to a renormalizab@(M) symmetric field theory in  this theory are defined by averaging with the Lagrangian
terms of which the limits and a perturbative expansion of Eq.
(10) make sense. For instance, the lif§{—0 may be in- _ _

terpreted as a short distance limit de?i?\ting a composite op- (¢ ')>‘_f DLea(N](. . )exd = L{da, mal] u-o-
erator, while the limitS,- ,—, with Sy, staying finite, (15
corresponds to a short chain limit derived [i25]. In the

frames of the polymer picture we may interpret Here, functional integratiofi D[ ¢4(r)] is defined in such a

G* (ro 1y - - - FmensSts - - .Smen) as the correlation Way that normalization is already includegtt)| =1 if all
function of m+n interacting walks all starting at poimty U, ,=0. The limitM =0 in Eq.(15) can be understood as a
with end points atrq, ... ,+,. These describe what is selection rule for the diagrams that contribute to the pertur-

called a polymer star. The normalized partition function ofbation theory expansion and can be easily checked in this
such a star ofn+n polymer chains with chain lengths pa- context to correspond to interacting polymers in the follow-

rametrized byS, may be written a$14,15 ing way: The partition functionz, ,, defined in Eq.(6) is

men mapped to the field-theoretical correlation functi&p,,, via

Z, il Sal = i f H dr _Laplace tran_sforms in _the chain Ien_gth variab&sto con-
TR M as1 0 2 jugate chemical potential$mass variables’) u,:

XGh(To:F 1+« FmensSts -+ Sman).

~ _ *® S
(11) Z*mn{/-”a}_fo l_b[ dSe 02, i Sat- (16)
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In terms of the above defined Lagrangian field theGfy,,, ~ Our original problem is described by two sets of walks of
is given by different species. In this case only the three different cou-

plingsuy;, Ugp, anduy,in Eq.(12) remain. We will refer to
their renormalized counterparts @§,, 9,2, 912=0,;. The
(17 corresponding functiong,,, B2, B1, define the flow in
c the space of couplings. This RG flow was discussed in

: I . . . 17,18 Its fixed points are determined by the set of equa-
Our interest is in the scaling properties of these functlonsEionSB:| P y g

Note that in Eq.(17) these are governed by the spectrum of
scaling dimensions of the composite operatdfs’'¢,. To * ) _
; ) B11(91) =0,
extract these dimensions we use RG metH@¥s2g. Here,
we apply the results of our previous approaches to the prob-

z*mn{/—”a}:<f al;[l dra¢a(r0)¢a(ra)>

: izati B2A93,) =0 (25)
lem of copolymer stard9,10]: massless renormalization 220922 '
group scheme with successigeexpansion(see, e.g.[19])
and massive renormalization group approach at fixed dimen- B1971,952,915) =0.

sion [20] compiled in a pseude-expansion[29]. On the

basis of correlation functions it is standard to define vertex In the space of the three couplings one fihd8] eight

functionsr'® corresponding to the coupling_gb as well as fixed points corresponding to the absence or presence of
Uab emn. . . . inter- and intraspecies interaction. The equations for the

vertex functiond 7 4 “with the insertion of composite opera- fiyeq noints of thed functions were found to have the fol-

tors I1,¢,. Explicit expressions may be found ja0]. We  lowing nontrivial solutions: B,,(g%)=0; and for a

define renormalization and introduce renormalized couplingst p, B10,0g%)=0, B1(9%,09%)=0, B1(0g%.9%)=0,

Jap by and B1,(9% ,9% ,0%) =0, corresponding to all combinations
_ _ of interacting and noninteracting chains.
Uab=u"Zy Z y ZapJab- (18 The phenomenon we address in this paper corresponds to
the case of a nonvanishing interaction between the two spe-
The renormalizingZ factors are power series in the renor- cies of walks, while one set has no self-interaction. Thus we

malized couplingsy,, subject to the following renormaliza- consider the two fixed points, which we c&@ (911=02
tion conditions: =0,01,=9¢) andU (g11=9*, 92,=0,091,=9y)). The first
(G) corresponds to a set of random walks interacting with
_ 9 _ another set of random walks of a second species and thus
Z4,(9aa) 5 T2 (Uaa(Gan)) = 1, (19 describes absorption on random walk absorbers; the second
ok (U) corresponds to a set of random walks interacting with a
— N _ set of self-avoiding walks and thus describes absorption on
Zap({9ab}) T SabUan({Gab})) = 4°Gap - (200 SAW (polyme) absorbers.
Havingmwalks of the first species andwalks of second

The scale parametegt is equal to the mass at which the gpecies we define the following exponents in the fixed points
massive scheme is evaluated or it gives the scale of the exs -

ternal momenta in the massless scheme.

In order to renormalize the star vertex functions we intro- G _ B p—— (26)
duce renormalization facto; ;" by mn™ 74911~ 922~ 0812=03).
k o Minn= M1g,(911= 0% ,022=0.912= 95, (27)
( I1 Zb)/j) 2y T g (Uan({Qaph) = e, (2D) _ _ _ N
a=1 which govern the scaling properties of the partition ).

. . . . . , The scaling may be formulated in terms of the skef
where &y, is the engineering dimension of the composite e ansorbing walks, while the RWs of the diffusing particles
operator are taken infinitely long. This corresponds to a short chain
expansior| 25]. We have to normalize the partition function
by the number of configurations of the absorber given by
Z. mo and by thenth power of the first momerisee Eq(1)].

. For largeR on the microscopic scaké the moments op(r)
The renormalized couplings,,, and renormalizingZ factors ~ at pointrg in the vicinity of the core of the star scale like
depend on the scale parameger This is expressed by the

following RG flow equations: (p(ro)") _n (R} e
=Zemn! Zemo(Zem1 ! Zimo) "~ — )
(p(ro)" 4

d— -
M@gabzﬁab({gab})y (23 (28)

whereR=S}_, and the exponents,,, are given as

€
5H¢a=(m+n) E_l +4—¢. (22)

d — —
— InZj5" = . 24
Iu’dM n H¢a({gab}) 7]H¢a({gab}) ( ) Tmn:_ 77mn+n77m]__(n_l)7]m0- (29)
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Here, v is the correlation length critical exponent of the [9,10. These exponents are available both in terms of
walks: v=1/2 for random walks andv=0.588 for self- e-expansion and pseudoexpansion series. The first corre-
avoiding walks atd=3. For the fixed pointG we have sponds to collecting perturbation theory terms of the same
nf;O:o andv=1/2 for all walks. The scaling near a RW star power of e=4—d. In the pseude-expansion serie§29]

is then described by inserting the value pf, while the  each power of the pseudoparameterr collects the contri-
scaling near a SAW star is obtained by insertin{. In butions from the dimension-dependent loop integrals of the
previous work{9,10], we obtained the exponentﬁn, anTJm same order. In the final results the limit 1 is taken. Start-

in third order of perturbation theory. ing from the relations forr,,,, EQ. (29), and the spectral
function (30) some algebra results in the corresponding ex-
pansions for the MF spectra for absorption on stars of ran-
IV. MULTIFRACTAL SPECTRUM L
v c SPECTRU dom walks(RWs) and self avoiding walk§SAWSs):
A widely used characterization for the MF spectrum is the

so called spectral functiohy(a) [2]. To obtain this function ~ @mn(&)=—m(2n—1)s?/8+m[4mn+6n¢(3) - 12n+3n?

for the absorption process on the center of a star mithgs L5 _om— 3
we analytically continue the set of exponemjs, in the vari- 5—2m=3£(3)]s7/16, @
ablen and calculate the following Legendre transform: fﬁw(s)= — mre2/8+mr?[ — 6+ 2n+2m+ 3¢(3)]s%/16,
(32
f )= — 7 Fham+ D with @r =D
mi Fmn mn TS mn T = m mn o dn m- aSMW(g)=—9m(2n—1)£?/128+ 3m[ 168mn+54n%+ 157
(30)
+18M¢(3)—350n—84m—90Z(3) ]£3/2048,
Following the standard definition we have included in Eg. (33)

(30) the fractal dimensiol, of the absorber. In particular,

this gives the maximal value of the spectral function — SAW(o)— _9mn2e2/128+ 3mn?[ — 175+ 36n+84m
fm(amn) to be equal to the dimensioD,,. An absorbing

chain is described by the case=2, whereD,=2 if the +90¢(3)]£3/2048, (39
chain is a random walk arid,=1.71 if it is self-avoiding. In

this special case the midpoint of the chain corresponding to  afu(7)=—me(1+4ni;—2i;—2n)72/4+ a?%opTg,

the “core” of the 2-star is equivalent to any other point (35
along the chain as far as the MF scaling of the moments of ew ) o, RW 3
concentration is concerned. This excludes the end point re- fo (1)=—emn(—1+2i;) 794+ f3 o7, (36)

gions that are described by tim=1 case.D, thus corre- AW _ _ AW
sponds to the fractal dimension of this set of equivalent @mpy (7)==9Ms(1—2n+4ni,—2i,)7%/64+ a3,
points. There appears to be no natural generalizatidn pf 3
to arbitrarym where only the moments of concentration near

a special ypoint of the i{ibsorbing structutee core of the far(7)=—9emm?(—1+2iy) 764+ 13500 ,7°. (38)
stap are of interest. In any cade,, only shifts the curve of
the spectral functiorf(«) in the f-a plane by a constant
offset. In our presentation we have chosen this offset in suc
a way that for allm the maximal point of the spectral curve
coincides with that of the casa=2. This corresponds to the

fact that the fractal dimension of a polymer star is equal to
that of a linear chain. V. RESUMMATION AND RESULTS

In them=2 case the moments of concentration may also g s well known, the series of typ81)—(39), as they
be calculated by averaging over all the S|te$ along the chainye..r in field theory appear to be of an asymptotic nature
For a very long chain one may expect this average 10 bgith zero radius of convergence and are of limited use with-
equivalent to an average Qf the moments of concentratiog resummationsee, e.g.[30]). However, knowing the
only at the midpoint site using an ensemble average over allgy nhtotic behavior of the series as derived from the RG
configurations of the chaif]. The site average has been the heqry e may evaluate these asymptotic series. To this end
original approach to multifractality also due 1o its easier apgeyera| procedures are available, differing in the amount of
plication in MC simulations. For generai, new interesting  ytormation that is used to control the convergence. We ex-
behavior occurs only in the vicinity of the core of the star. 4t this additional information for the case of our Lagrang-

Only an ensemble average may thus be used to define the, (13) from [18,31. We expect the following behavior of
moments of concentration near this point. This approach e kth order perturbation theory term, for any of the
used here for all values af. Note that some features of MF above quantities:

spectra that are defined using site averages do not hold for
those based on ensemble averages. This will be discussed A~k! KP(—a)k. (39
below.

To obtain the expressions for the spectral function we us@he constant for the ¢ expansion of Lagrangiag?” field
the perturbation expansions for thg exponents given to theory with one coupling was derived [81]: a=3/8. For
third order both in massless and massive renormalizatiothe unsymmetric fixed point, where two different cou-

Here {(3)=1.202 is the Riemann zeta function,, i, are
Hwe two-loop integrals depending on the space dimengion
atd=3 i,=2/3, i,=—2/27. The explicit form of the three-
loop contributions in Eq35)—(38) is given in Appendix A.
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£ (a)

1.2
FIG. 2. MF spectrum for diffu-

sion near an absorbing RW. Com-
parison of different approximation
and resummation schemes.

1

0.8 -

0.6 |-

04 -

0.2

0 e
0 0.5 1

plings are present, the value=27/64 has been proposed most simple approach is to directly insert1 into thee
[18]. We assume here that the same properties also hold faxpansion, and for the expansion to use=1 and thed
the pseude expansion in terms of. With the above infor- =3-dimensional values for the integrals. As can be seen
mation at hand one can make use of the Borel summatiofrom the curves, this will work only for the series truncated
technique improved by the conformal mapping procedureat second order and for smail i.e., near the maximum of
that has served as a powerful tool in field theory calculationg,(«) at n=0. In addition we have performed an analytical
(see[30], for example. We present some details of the re- continuation of our series usifg@/1] Padeapproximants for
summation procedure in Appendix B. the series truncated at third order. The symmetry of the Pade
The results of the resummation of the series for the specapproximant holds only in the region shown and may be an
tral functions are presented in Figs 2—6. Each point markedrtifact of the method. On the left wing, where it coincides
by a symbol corresponds to the resummation of bottwith the resummed results, the Padpproximant gives a
fm(amn and ap, for a given pair (,n), where we used a continuation that is compatible with the estimation for the
half-integer spacing for the values of Note that the right minimal « value a,j,=d—2 [7]. The Padaesult is an(€)
wings of the curves correspond to negatiwve 0. In this  =1.333, ay,i(0=1.017 for the RW absorber angl,(¢)
region reliable resummations were feasible only for suffi-=1.250, a,,(7)=1.013 for the SAW absorber, which is cal-
ciently largem. We have only included resummations that culated here only from third order perturbation theory. The
were successful in minimizing the deviation between the secPadeapproximant, while already significantly improving the
ond and third order resummed values as described in Appemronvergence of the results, introduces some apparently arti-
dix B. ficial singularities. Moreover, it does not make full use of the
In Fig. 2 we study the effects of different RG and resum-known asymptotics for the expansions. We have therefore
mation procedures fowS‘W(a) in d=3 dimensions. The chosen a more sophisticated method of resummation that has

©
“E e -
1F .
it
7'!\ : ;’- FIG. 3. MF spectra for diffu-
0.5 - Y f .

e sion near an absorbing RW star (
et expansio
ein p n
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fm(@)

FIG. 4. MF spectra for diffu-
sion near an absorbing RW star (
expansion

0.5

] ] ] 1
1.5 2 2.5 3 o

proven to reproduce reliable data in many field-theoretic aption of the maximum is given by it& coordinate ins ex-
plications [28,30. The results of these resummations arepansion in the following form:
again shown for both RG approaches. Note that though the

results obtained foe, and f,(«,) for a specific value oh U 0= Tmi1— o (40)
differ in both approaches, the same cufyé«) is described ' ’ ’
with better coincidence for the left wing of the curves, cor- amx: me/8+ - - -, (41)

responding to positive.
Figures 3—-6 present the resummed MF spetijar) of saw
Brownian motion near generat-leg polymer stars inl=3 Amax =M(1—m)e/8+ - - -. (42
dimensions. The family of curvefs,(«) appears to approach
some limiting envelope for increasing in all cases. This Form>1 the position of the SAW maximum is shifted in a
behavior is more pronounced in the case of Brownian motiorirection opposite that of the RW maximum. In thexpan-
near an absorbing SAW star. This provides evidence that th&ion we find for the curvature at the maximum,
MF spectrum catches rather general properties of the phe-
nomena under consideration. Here, for the absorption of dif- U (a)=— 7,;;1’0, (43
fusing particles on a polymer star the spectrum only slightly
varies with the number of legs of the star, even in the nRW, 2
vicinity of the core of the star. Only the absorption on an end Ut ™ (@)= —me/4{1—e/22m—6+3L(3) ]} + - '(’44)
point (m=1) proves to be an exception.
The behavior of the maximum of the spectra may also be

. . N . .7 . nSAW, _ 2

studied in terms of the series expansion. The original posi- U™ (@)= —9me?/64+ - - -. (45)
—_ 1 1 I I I

3
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fm(2)

FIG. 6. MF spectra for diffu-
sion near an absorbing SAW star
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Here, we use the notatiorfg(«)=d/daf(amn)|n=0 and  which renormalizability has been provéb5]. Furthermore,
Mn= d/dnym =0, and correspondingly for higher deriva- the scaling exponents of these operators have been calculated
tives. As can be seen also in the plots, the radRyg  in our previous worK9,10]. There, it has been shown that
~1/f! (a) of the curvature increases withfor both the RW the resulting spectra of scaling dimensions of these operators
and SAW star. Some asymmetry is also present in the plotglisplay the convexity properties that are necessarily found
It may be more explicitly extracted from the series by con-for multifractal scaling but unusual for power of field opera-
sidering tors in field theory[6,8].
The extensive RG study if9,10] with three-loop results
fr(a)lfim(a)= (7m0 7om. (46)  allows us here to consider the general case of Brownian mo-
tion near the core of a star polymer withlegs. The higher
frra) /Y (@) =me/1d1-e(2m—6+34(3))]+- - -, order calculation was improved by resummation to give re-
(47) liable estimates for the families of MF spectra describing the
SAW "SAW multiscaling of Brownian motion near absorbing RW or
fro () 07" (@) =mel1g 1—e(7m/2—175/24 SAW stars.
Our results have proven to be equally stable under the
T1S64 3] -- “8) change of the general RG treatment. We applied two

This shows that the asymmetry at the maximum decreasé®mplementary RG approaches, the dimensional renormal-
slightly with m. The plots seem to indicate that it approachegzation with successives expansion as well as massive
some limiting value. renormalization at fixed space dimensionalities. The resum-
From the plots we present here, in general one may denation in particular enabled us to extend the region over
duce that the series for the MF spectra for diffusion near afvhich the curves for the MF spectra coincide in both RG
absorbing polymer star possess stable resummations and tf@gProaches, reflecting the stability of the scheme of calcula-
the shape of the resulting curves is robust against the chang@ns. Our plotted resultgFigs. 3—6 indicate some indepen-
of the number of legsn of the polymer star, while a limiting dence pf the spectral function from the number of legs of the
curve seems to be approached with increasing abSOI’bIng polymer star. For a hlghel’ number Of |egS the
spectrum seems to approach a limiting curve. The MF spec-
tra calculated here show most of the common features shared
by spectral functions that describe a variety of MF phenom-
The present work represents extended results on the Ména. Let us note, however, that unlike the common definition
behavior of Brownian motion in the vicinity of an absorbing of the underlying scaling exponents based on site averages
polymer structure. We extend the ideas of Cates and Wittewe rely here on ensemble averages for the moments of the
[7] to map this problem to a problem of interacting walks. Laplacian field of Brownian motion. We average over the
The former authors used a Fixman expansion technique toonfigurational ensembles of absorbing polymer stars. Only
extract the exponents governing the MF scaling. This apfor the case oim=2 legs of the absorbing star, could a site
proach is equivalent to a direct renormalization method andwverage definition also be used. As has been noted also in
unique to dimensional renormalization with expansion. [7,32] the ensemble average leads to the possibility of nega-
The Fixman expansion assumes without proof the renormakive values of the spectral functidsee Figs. 2—-6 Further-
izability of the quantities corresponding to higher momentsmore, the fractal dimension is not defined for the core of a
of the Laplacian field of Brownian motion. Here, we map thepolymer star.
problem to anO(M)-symmetricg*-field theory relating the Experimentally such absorbing systems are realized in
above quantities to corresponding composite operators fafiffusion controlled reactions with traps or reaction sites at-

VI. CONCLUSIONS
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tached to polymer chains. This is described by the irrevers- +496ni,2+ 81n%i ; — 72ismn—81i ,n?— 253 ,mn
ible reactionA+B—0 with freely diffusing particlesA and . o o ) )
traps B attached along the polymer chdial]. The higher —72mn—8i,i+16ni5i;—8niy+396nmi;

nth moments of the field at some special trap might then
describe the reaction rate fé&"+ C—0. If C is located at

the core of a polymer star, this system realizes all aspects of 3emr?
our study. While extensive MC studies exist for many prob- f3AW— _ — (95— 18n1—54i,n+ 135 ,—36ism

— 248,24+ 190+ 270 4n), (A3)

lems in the field of DLA, we hope that our detailed calcula- loop 512

tions might initiate also an MC approach to the present prob- — 126 ,m— 36i M — 45i,— 361 5+ 198Mi, + 2482
lem. The current study also allows an extrapolatiom to2 .
dimensions. However, one should not expect to find results —359,+54ni;—54m+36ig—4i,+8i,i1). (Ad)

of a pure two-dimensional approach, due to topological re-

strictions ind=2 that are not present in the perturbative The numerical values of the two-loop,( i,) and three-

expansior 33]. loop i3—ig integrals at d=3 equal [34]. i;=2/3,
While standard in field-theoretical studies of critical phe-i,=—2/27, i;=—0.0376820725,i,=0.383576 096 6,i 5

nomena, the resummation technique, to our knowledge, has 0.5194312413, ig = 1/2, i,=0.1739006107, ig

not been applied in the theory of multifractals. We hope that= —0.094 651431 9.

our attempt will attract attention to this possibility, in the

context of other problems that arise in the theory of multi- APPENDIX B: RESUMMATION PROCEDURE

fractal measures. ) ) .
Here, we briefly describe the resummation method for the
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A=ckPo(—a)*k!I[1+0(1/k)], k—ox (B2)
APPENDIX A: THREE-LOOP CONTRIBUTIONS
TO THE MULTIFRACTAL SPECTRUM with known values of constants, by, a. The property

o (B2) indicates the Borel summability of the seri@l). The
Here, we collect the three-loop contributions of the ex-ggrel resummation procedure takes into account the

pressions for the Hder exponentsry, [Egs.(35) and(37)]  asymptotic behavior of the coefficients and maps the
and the spectral functiorf§,(amn) [Egs.(36) and(38)] ob-  asymptotic series to a convergent one with the same
tained in the pseude-expansion scheme. The expressionsasymptotic limit. The procedure is as follows. For the series
read (B1) we define a Borel-Leroy transforif(e) by

a?_‘%opz—%(3i6m—3n2+3m—6mn+20il—6i4+3i5 ooy e B3
7 I'(j+b+1)’
—3ig+3i;—16i,*—46ni;— 5+ 6i ym+3ism+12n
o ] ). L, . with the Euler gamma functioh'(x) and a fit parameteb.
—9i4n—12,mn+9n%i, +32i,"~6i;n—6ismn  Then the initial series may be regained from
—6igmn+ 6ign+ 18 4n—12mi; + 24nmi; — 6ign), o
re: — bo—t¢B
2
st}f(/)Op:_ emn (6—2n—6i4n+9i,— 3ism—6i,m—3igm Assuming the behayior of. the high order terif®2), one
8 concludes that the singularity of the transformed sefif¢s)
i o . - - closest to the origin is located at the point {/a). Confor-
3i7=3ist12miy + 16,7~ 23, +6ni; —3m mally mapping thes plane onto a disk of radius 1 while
+3ig), (A2) leaving the origin invariant,
3me + 1/2_
o loep=— E13 (86~ 718ni;— 198miy + 36 gm-+ 126 ,m woatae) =1 4w

_—! E=— )
(1+ag)?+1 a(1-w)?

+36ism—27n?+54m—1 +332,+4i
36ism s O8mn+ 332, +4i and substituting this intd®(e), and reexpanding im, we

—108,+36i5—36ig+45,—72i5n+72ign—90i;n receive a series defined on the disk with radius 1 invhe
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plane. This series is then resubstituted into @}). In order  sen in our calculations as a fit parameter defined by the con-
to weaken a possible singularity in the plane, the corre- dition of minimal difference between resummed second or-
sponding expression is multiplied by {iw)“ and thus one der and third order results. The resummation procedure was
more parameter is introduced[35]. In the resummation seen to be quite insensitive to the paramétértroduced by
procedure the value afis taken from the known large-order the Borel-Leroy transformatiofB3). The above procedure
behaviol{18,31] of the e-expansion series, whilke was cho-  was applied to both the- and pseude-expansion series.

[1] H. G. E. Hentschel and |. Procaccia, Physic&,[#35(1983. [16] L. Schder and Ch. Kappeler, J. Phy@arig 46, 1853(1985.

[2] T. C. Halsey, M. H. Jensen, L. P. Kadanoff, I. Procaccia, and17] L. Schder and C. Kappeler, Colloid Polym. Sc268 995
B. I. Shraiman, Phys. Rev. 83, 1141(1986. (1990.

[3] B. B. Mandelbrot, J. Fluid Meclt62, 331(1974; T. C. Halsey, [18] L. Schder, U. Lehr, and C. Kappeler, J. Phys1,1211(1991).
P. Meakin, and I. Procaccia, Phys. Rev. Lé6, 854 (1986); [19] E. Brezin, J. C. Le Guillou, and J. Zinn-Justin,Mmase Tran-

T. A. Witten and M. E. Cates, Scien@32 1607(1988; M. sitions and Critical Phenomenadited by C. Domb and M. S.
Marsili and L. Pietronero, Physica A75 9 (1991); J. M. Green(Academic Press, New York, 19¥6Vol. 6, pp. 125—
Deutsch and R. A. Zacher, Phys. Rev.4H R8 (1994); G. 247.
Eyink and N. Goldenfeldibid. 50, 4679(1994. [20] G. Parisi, J. Stat. Phy&3, 49 (1980.
[4] P. Meakin, in Springer Proceedings in Physics. Computer [21] S. F. Burlatsky, G. S. Oshanin, V. N. Likhachev, Sov. J.
Simulation Studies in Condensed Matter Physathted by D. Chem. Phys7, 1680(199)); S. F. Burlatsky and G. S. Osha-
P. Landau, K. K. Mon, and H.-B. Sctiler (Springer-Verlag, nin, Phys. Lett. A145 61(1990; G. Oshanin, M. Moreau, and
Berlin, 1988, Vol. 33, pp. 55-64; F. Familyibid, pp. 65-75. S. Burlatsky, Adv. Colloid Interface Sci9, 1 (1994.
[5] W. Feller,An Introduction to Probability TheorjWiley, New [22] H. Kleinert, Path Integrals in Quantum Mechanics, Statistics
York, 1966. and Polymer Physic§World Scientific Publishing Co., Sin-
[6] B. Duplantier and A. W. W. Ludwig, Phys. Rev. Le@6, 247 gapore, 199b
(1999. [23] This redefinition leads to some peculiarities in the MF spec-
[7] M. E. Cates and T. A. Witten, Phys. Rev. Lel6, 2497 trum as discussed ifv] and as we will see later.
(1986; Phys. Rev. A35, 1809(1987. [24] P.-G. de Gennesscaling Concepts in Polymer Physi@or-
[8] C. von Ferber and Yu. Holovatch, Renormalization Group nell University Press, Ithaca, NY, 1979. des Cloizeaux and
96, edited by D. V. Shirkov, D. I. Kazakov, and V. B. Priez- G. Jannink,Polymers in Solution(Clarendon Press, Oxford,
zhev (Joint Institute for Nuclear Research, Dubna, Russia, 1990; L. Schder, Universal Properties of Polymer Solutions
1997, pp. 123-134. as Explained by the Renormalization Gro{§pringer, Berlin,
[9] C. von Ferber and Yu. Holovatch, Europhys. Le2®, 31 1999.
(1997); Physica A249, 327 (1998. [25] C. von Ferber, Nucl. Phys. B90, 511 (1997).
[10] C. von Ferber and Yu. Holovatch, Phys. Rev.56, 6370 [26] P. G. de Gennes, Phys. Lett.38, 339(1972.
(1997. [27] N. N. Bogoliubov and D. V. Shirkov/|ntroduction to the
[11] J. Lee and H. E. Stanley, Phys. Rev. Létt, 2945(1988; P. Theory of Quantized Field®iley & Sons, New York, 1958
Meakin, Phys. Rev. A35, 2234 (1987; A. Block, W. von  [28] J. Zinn-JustinEuclidean Field Theory and Critical Phenom-
Bloh, and H. J. Schellnhubeibid. 42, 1869 (1990; S. ena(Oxford University Press, New York, 1989

Schwarzer, M. Wolf, S. Havlin, P. Meakin, and H. E. Stanley, [29] B. G. Nickel (unpublishegt see Ref. 19 if30].

ibid. 46, R3016 (1992. Note that these authors study MF [30] J. C. Le Guillou and J. Zinn-Justin, Phys. Rev.2R, 3976

properties of the growth probability at the sites of DLA aggre- (1980.

gate, which is equivalent to the concentration of diffusing par-[31] L. N. Lipatov, Zk. Eksp. Teor. Fix72, 411(1977 [Sov. Phys.
ticles in the immediate neighborhood of the aggregate in our  JETP 45, 216 (1977)]; E. Brezin, J. C. Le Guillou, and J.

formalism. Zinn-Justin, Phys. Rev. b5, 1544(1977.
[12] B. B. Mandelbrot,The Fractal Geometry of Naturén. H. [32] T. C. Halsey, K. Honda, and B. Duplantier, J. Stat. PI85.
Freeman and Company, New York, 1983 681 (1996.
[13] B. Duplantier, Phys. Rev. Let82, 880(1999. [33] For example, for the random walk @h= 2 the absorbing poly-
[14] B. Duplantier, Phys. Rev. Leth7, 941 (1986; J. Stat. Phys. mer can in general be approached only from one side.
54, 581(1989; K. Ohno, K. Binder, J. PhygParig 49, 1329  [34] B. G. Nickel, D. I. Meiron, and G. A. Baker, Jr., University of
(1988. Guelph Report, 1977; Yu. Holovatch and T. Krokhmal's'kii, J.
[15] L. Schder, C. von Ferber, U. Lehr, and B. Duplantier, Nucl. Math. Phys.35, 3866(1994).

Phys. B374, 473(1992. [35] J. Zinn-Justin, Phys. Ref@0, 109 (198J).



